pkgdown/extra.css

Skip to contents

hd_plot_wgcna() generates useful visualizations for the results of the WGCNA analysis. The function generates a heatmap of proteins and their adjacency, a heatmap of module eigengene (MEs) adjacency, heatmaps of predictive power score (PPS) between MEs and metadata and the dendrogram of all genes.

Usage

hd_plot_wgcna(dat, metadata = NULL, wgcna, clinical_vars = NULL)

Arguments

dat

An HDAnalyzeR object or a dataset in wide format and sample ID as its first column.

metadata

A dataset containing the metadata information with the sample ID as the first column. If a HDAnalyzeR object is provided, this parameter is not needed.

wgcna

The WGCNA analysis results obtained from hd_wgcna().

clinical_vars

A character vector containing the names of the clinical variables to be used in the predictive power score analysis.

Value

The input object enriched with the plots.

Examples

# Initialize an HDAnalyzeR object
hd_object <- hd_initialize(example_data, example_metadata)

# Perform WGCNA analysis
wgcna_res <- hd_wgcna(hd_object)
#> Warning: executing %dopar% sequentially: no parallel backend registered
#>    Power SFT.R.sq  slope truncated.R.sq  mean.k. median.k.   max.k.
#> 1      1   0.5100 -0.742         0.7080 1.17e+01  1.07e+01 24.50000
#> 2      2   0.7400 -0.863         0.7370 2.90e+00  1.86e+00  9.47000
#> 3      3   0.8020 -0.876         0.8210 1.08e+00  3.88e-01  5.11000
#> 4      4   0.8300 -0.882         0.8000 4.92e-01  1.11e-01  3.00000
#> 5      5   0.8660 -0.947         0.8340 2.51e-01  3.05e-02  1.86000
#> 6      6   0.0873 -1.240        -0.1180 1.37e-01  9.13e-03  1.19000
#> 7      7   0.8570 -0.979         0.8460 7.87e-02  2.87e-03  0.78100
#> 8      8   0.2060 -1.870         0.0826 4.67e-02  9.18e-04  0.52100
#> 9      9   0.2080 -1.830         0.0607 2.85e-02  3.02e-04  0.35300
#> 10    10   0.1050 -1.250        -0.0824 1.78e-02  1.01e-04  0.24200
#> 11    12   0.0828 -1.550        -0.0219 7.34e-03  1.18e-05  0.11700
#> 12    14   0.1170 -1.750        -0.0305 3.23e-03  1.50e-06  0.05900
#> 13    16   0.0681 -1.520         0.0990 1.50e-03  1.98e-07  0.03040
#> 14    18   0.1030 -1.740         0.0846 7.24e-04  2.50e-08  0.01600
#> 15    20   0.1090 -1.720         0.0970 3.62e-04  3.22e-09  0.00853
#>      mergeCloseModules: less than two proper modules.
#>       ..color levels are grey, turquoise
#>       ..there is nothing to merge.

# Plot WGCNA results
wgcna_res <- hd_plot_wgcna(hd_object,
                           wgcna = wgcna_res,
                           clinical_vars = c("Disease", "Sex", "Age", "BMI"))
#> TOM calculation: adjacency..
#> ..will not use multithreading.
#>  Fraction of slow calculations: 0.000000
#> ..connectivity..
#> ..matrix multiplication (system BLAS)..
#> ..normalization..
#> ..done.


# Access the plots
wgcna_res$tom_heatmap

wgcna_res$me_adjacency

wgcna_res$pps
#> # A tibble: 16 × 11
#>    x       y     result_type      pps metric baseline_score model_score cv_folds
#>    <chr>   <chr> <chr>          <dbl> <chr>           <dbl>       <dbl>    <dbl>
#>  1 MEturq… Dise… predictive… 0        F1_we…         0.0834      0.0338        5
#>  2 MEturq… Sex   predictive… 6.85e- 3 F1_we…         0.534       0.411         5
#>  3 MEturq… Age   predictive… 0        MAE           12.9        13.0           5
#>  4 MEturq… BMI   predictive… 2.22e-16 MAE            3.74        3.78          5
#>  5 MEgrey  Dise… predictive… 6.19e- 3 F1_we…         0.0834      0.0474        5
#>  6 MEgrey  Sex   predictive… 8.20e- 3 F1_we…         0.534       0.436         5
#>  7 MEgrey  Age   predictive… 0        MAE           12.9        13.0           5
#>  8 MEgrey  BMI   predictive… 1.11e-16 MAE            3.74        3.81          5
#>  9 Disease MEtu… predictive… 3.89e- 2 MAE            0.0335      0.0322        5
#> 10 Disease MEgr… predictive… 8.97e- 2 MAE            0.0312      0.0284        5
#> 11 Sex     MEtu… predictive… 3.72e- 3 MAE            0.0335      0.0335        5
#> 12 Sex     MEgr… predictive… 1.25e- 2 MAE            0.0312      0.0310        5
#> 13 Age     MEtu… predictive… 0        MAE            0.0335      0.0336        5
#> 14 Age     MEgr… predictive… 0        MAE            0.0312      0.0314        5
#> 15 BMI     MEtu… predictive… 0        MAE            0.0335      0.0336        5
#> 16 BMI     MEgr… predictive… 4.49e- 3 MAE            0.0312      0.0318        5
#> # ℹ 3 more variables: seed <dbl>, algorithm <chr>, model_type <chr>
wgcna_res$me_pps_heatmap

wgcna_res$var_pps_heatmap

wgcna_res$me_cor_heatmap

wgcna_res$dendrogram