pkgdown/extra.css

Skip to contents

hd_wgcna() performs a weighted gene co-expression network analysis (WGCNA) on the provided data. The user can specify the power parameter for the analysis or the function will select an optimal power value based on the data. The function returns a list containing the WGCNA object, the power and the power plots (in case optimization is performed). If the data contain missing values, the function imputes them using the k-nearest neighbors algorithm (k = 5).

Usage

hd_wgcna(dat, power = NULL)

Arguments

dat

An HDAnalyzeR object or a dataset in wide format and sample ID as its first column.

power

The power parameter for the WGCNA analysis as an integer between 1 and 30. If NULL, the function will select an optimal power value. Default is NULL.

Value

A list containing the results of the WGCNA.

Details

If you want to learn more about WGCNA, please refer to the following tutorial:

  • https://edo98811.github.io/WGCNA_official_documentation/

Examples

# Initialize an HDAnalyzeR object
hd_object <- hd_initialize(example_data, example_metadata)

# Perform WGCNA analysis
wgcna_res <- hd_wgcna(hd_object)
#>    Power SFT.R.sq  slope truncated.R.sq  mean.k. median.k.   max.k.
#> 1      1   0.5100 -0.742         0.7080 1.17e+01  1.07e+01 24.50000
#> 2      2   0.7400 -0.863         0.7370 2.90e+00  1.86e+00  9.47000
#> 3      3   0.8020 -0.876         0.8210 1.08e+00  3.88e-01  5.11000
#> 4      4   0.8300 -0.882         0.8000 4.92e-01  1.11e-01  3.00000
#> 5      5   0.8660 -0.947         0.8340 2.51e-01  3.05e-02  1.86000
#> 6      6   0.0873 -1.240        -0.1180 1.37e-01  9.13e-03  1.19000
#> 7      7   0.8570 -0.979         0.8460 7.87e-02  2.87e-03  0.78100
#> 8      8   0.2060 -1.870         0.0826 4.67e-02  9.18e-04  0.52100
#> 9      9   0.2080 -1.830         0.0607 2.85e-02  3.02e-04  0.35300
#> 10    10   0.1050 -1.250        -0.0824 1.78e-02  1.01e-04  0.24200
#> 11    12   0.0828 -1.550        -0.0219 7.34e-03  1.18e-05  0.11700
#> 12    14   0.1170 -1.750        -0.0305 3.23e-03  1.50e-06  0.05900
#> 13    16   0.0681 -1.520         0.0990 1.50e-03  1.98e-07  0.03040
#> 14    18   0.1030 -1.740         0.0846 7.24e-04  2.50e-08  0.01600
#> 15    20   0.1090 -1.720         0.0970 3.62e-04  3.22e-09  0.00853
#>      mergeCloseModules: less than two proper modules.
#>       ..color levels are grey, turquoise
#>       ..there is nothing to merge.

# Access the WGCNA results
wgcna_res$wgcna$colors
#>      AARSD1        ABL1       ACAA1        ACAN        ACE2       ACOX1 
#> "turquoise" "turquoise" "turquoise"      "grey"      "grey" "turquoise" 
#>        ACP5        ACP6       ACTA2       ACTN4        ACY1         ADA 
#>      "grey"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>        ADA2      ADAM15      ADAM23       ADAM8    ADAMTS13    ADAMTS15 
#>      "grey"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>    ADAMTS16     ADAMTS8   ADCYAP1R1      ADGRE2      ADGRE5      ADGRG1 
#>      "grey"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>      ADGRG2        ADH4         ADM        AGER        AGR2        AGR3 
#>      "grey"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>        AGRN        AGRP        AGXT        AHCY        AHSP        AIF1 
#>      "grey"      "grey"      "grey" "turquoise"      "grey" "turquoise" 
#>       AIFM1         AK1      AKR1B1      AKR1C4      AKT1S1        AKT3 
#> "turquoise" "turquoise" "turquoise"      "grey" "turquoise" "turquoise" 
#>       ALCAM     ALDH1A1     ALDH3A1        ALPP        AMBN        AMBP 
#>      "grey"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>        AMFR      AMIGO2         AMN       AMY2A       AMY2B         ANG 
#>      "grey"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>      ANGPT1      ANGPT2     ANGPTL1     ANGPTL2     ANGPTL3     ANGPTL4 
#> "turquoise"      "grey"      "grey"      "grey"      "grey"      "grey" 
#>     ANGPTL7     ANKRD54       ANPEP      ANXA10      ANXA11       ANXA3 
#>      "grey"      "grey"      "grey"      "grey" "turquoise" "turquoise" 
#>       ANXA4       ANXA5        AOC1        AOC3     APBB1IP       APEX1 
#> "turquoise"      "grey"      "grey"      "grey" "turquoise" "turquoise" 
#>       APLP1        APOH        APOM         APP        AREG        ARG1 
#>      "grey"      "grey"      "grey" "turquoise"      "grey"      "grey" 
#>     ARHGAP1    ARHGAP25    ARHGEF12      ARID4B        ARNT        ARSA 
#> "turquoise" "turquoise" "turquoise"      "grey"      "grey"      "grey" 
#>        ARSB        ART3        ARTN        ATF2       ATG4A       ATOX1 
#> "turquoise"      "grey"      "grey"      "grey" "turquoise" "turquoise" 
#>     ATP5IF1      ATP5PO     ATP6AP2     ATP6V1D     ATP6V1F      ATXN10 
#> "turquoise"      "grey"      "grey"      "grey" "turquoise" "turquoise" 
#>       AXIN1         AXL        AZU1     B4GALT1 
#> "turquoise"      "grey"      "grey"      "grey" 
head(wgcna_res$wgcna$MEs)
#>         MEturquoise       MEgrey
#> DA00001  0.01303185  0.079182698
#> DA00002 -0.06147570  0.001922882
#> DA00003  0.05582282 -0.040884118
#> DA00004  0.04934369  0.026582974
#> DA00005  0.03279477  0.065722451
#> DA00006 -0.00363437 -0.013683113
wgcna_res$power
#> [1] 5
wgcna_res$power_plots