hd_impute_knn()
imputes missing values in a dataset using the k-nearest neighbors method.
It can also display the percentage of missing values in each column before imputation.
The user can also specify the number of neighbors to consider for imputation.
Examples
# Create the HDAnalyzeR object providing the data and metadata
hd_object <- hd_initialize(example_data, example_metadata)
hd_object$data
#> # A tibble: 586 × 101
#> DAid AARSD1 ABL1 ACAA1 ACAN ACE2 ACOX1 ACP5 ACP6 ACTA2
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 DA00001 3.39 2.76 1.71 0.0333 1.76 -0.919 1.54 2.15 2.81
#> 2 DA00002 1.42 1.25 -0.816 -0.459 0.826 -0.902 0.647 1.30 0.798
#> 3 DA00003 NA NA NA 0.989 NA 0.330 1.37 NA NA
#> 4 DA00004 3.41 3.38 1.69 NA 1.52 NA 0.841 0.582 1.70
#> 5 DA00005 5.01 5.05 0.128 0.401 -0.933 -0.584 0.0265 1.16 2.73
#> 6 DA00006 6.83 1.18 -1.74 -0.156 1.53 -0.721 0.620 0.527 0.772
#> 7 DA00007 NA NA 3.96 0.682 3.14 2.62 1.47 2.25 2.01
#> 8 DA00008 2.78 0.812 -0.552 0.982 -0.101 -0.304 0.376 -0.826 1.52
#> 9 DA00009 4.39 3.34 -0.452 -0.868 0.395 1.71 1.49 -0.0285 0.200
#> 10 DA00010 1.83 1.21 -0.912 -1.04 -0.0918 -0.304 1.69 0.0920 2.04
#> # ℹ 576 more rows
#> # ℹ 91 more variables: ACTN4 <dbl>, ACY1 <dbl>, ADA <dbl>, ADA2 <dbl>,
#> # ADAM15 <dbl>, ADAM23 <dbl>, ADAM8 <dbl>, ADAMTS13 <dbl>, ADAMTS15 <dbl>,
#> # ADAMTS16 <dbl>, ADAMTS8 <dbl>, ADCYAP1R1 <dbl>, ADGRE2 <dbl>, ADGRE5 <dbl>,
#> # ADGRG1 <dbl>, ADGRG2 <dbl>, ADH4 <dbl>, ADM <dbl>, AGER <dbl>, AGR2 <dbl>,
#> # AGR3 <dbl>, AGRN <dbl>, AGRP <dbl>, AGXT <dbl>, AHCY <dbl>, AHSP <dbl>,
#> # AIF1 <dbl>, AIFM1 <dbl>, AK1 <dbl>, AKR1B1 <dbl>, AKR1C4 <dbl>, …
# Data after imputation
res <- hd_impute_knn(hd_object, k = 3)
#> # A tibble: 91 × 2
#> Variable NA_percentage
#> <chr> <dbl>
#> 1 AARSD1 5.80
#> 2 ABL1 5.80
#> 3 ACAA1 5.29
#> 4 ACAN 3.92
#> 5 ACE2 6.14
#> 6 ACOX1 3.92
#> 7 ACP6 2.22
#> 8 ACTA2 6.14
#> 9 ACTN4 6.14
#> 10 ACY1 3.92
#> # ℹ 81 more rows
res$data
#> # A tibble: 586 × 101
#> DAid AARSD1 ABL1 ACAA1 ACAN ACE2 ACOX1 ACP5 ACP6 ACTA2 ACTN4
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 DA00… 3.39 2.76 1.71 0.0333 1.76 -0.919 1.54 2.15 2.81 0.742
#> 2 DA00… 1.42 1.25 -0.816 -0.459 0.826 -0.902 0.647 1.30 0.798 -0.0659
#> 3 DA00… 3.80 2.82 2.35 0.989 -0.0218 0.330 1.37 0.561 1.34 0.737
#> 4 DA00… 3.41 3.38 1.69 0.411 1.52 1.38 0.841 0.582 1.70 0.108
#> 5 DA00… 5.01 5.05 0.128 0.401 -0.933 -0.584 0.0265 1.16 2.73 0.350
#> 6 DA00… 6.83 1.18 -1.74 -0.156 1.53 -0.721 0.620 0.527 0.772 0.229
#> 7 DA00… 3.44 4.75 3.96 0.682 3.14 2.62 1.47 2.25 2.01 0.170
#> 8 DA00… 2.78 0.812 -0.552 0.982 -0.101 -0.304 0.376 -0.826 1.52 -0.597
#> 9 DA00… 4.39 3.34 -0.452 -0.868 0.395 1.71 1.49 -0.0285 0.200 -0.532
#> 10 DA00… 1.83 1.21 -0.912 -1.04 -0.0918 -0.304 1.69 0.0920 2.04 0.501
#> # ℹ 576 more rows
#> # ℹ 90 more variables: ACY1 <dbl>, ADA <dbl>, ADA2 <dbl>, ADAM15 <dbl>,
#> # ADAM23 <dbl>, ADAM8 <dbl>, ADAMTS13 <dbl>, ADAMTS15 <dbl>, ADAMTS16 <dbl>,
#> # ADAMTS8 <dbl>, ADCYAP1R1 <dbl>, ADGRE2 <dbl>, ADGRE5 <dbl>, ADGRG1 <dbl>,
#> # ADGRG2 <dbl>, ADH4 <dbl>, ADM <dbl>, AGER <dbl>, AGR2 <dbl>, AGR3 <dbl>,
#> # AGRN <dbl>, AGRP <dbl>, AGXT <dbl>, AHCY <dbl>, AHSP <dbl>, AIF1 <dbl>,
#> # AIFM1 <dbl>, AK1 <dbl>, AKR1B1 <dbl>, AKR1C4 <dbl>, AKT1S1 <dbl>, …