pkgdown/extra.css

Skip to contents

clean_metadata() preprocesses the metadata by filtering out rows based on the specified criteria.

  • It keeps only the specified columns.

  • It keeps only the data of the specified cohort.

  • It removes rows with NAs in the DAid and Disease columns.

  • It replaces the specified values with NA.

Usage

clean_metadata(
  df_in,
  keep_cols = c("DAid", "Disease", "Sex", "Age", "BMI"),
  cohort = NULL,
  remove_na_cols = c("DAid", "Disease"),
  replace_w_na = c("Unknown", "unknown", "none", NA, "na")
)

Arguments

df_in

The input metadata.

keep_cols

The columns to keep in the output metadata.

cohort

The cohort to keep.

remove_na_cols

The columns to check for NAs and remove respective rows. Defaults is c("DAid", "Disease").

replace_w_na

The values to replace with NA. Default is c("Unknown", "unknown", "none", NA, "na").

Value

The preprocessed metadata.

Examples

# Unprocessed metadata
example_metadata
#> # A tibble: 586 × 9
#>    DAid    Sample     Disease Stage   Grade Sex     Age   BMI Cohort
#>    <chr>   <chr>      <chr>   <chr>   <chr> <chr> <dbl> <dbl> <chr> 
#>  1 DA00001 AML_syn_1  AML     2       NA    F        42  22.7 UCAN  
#>  2 DA00002 AML_syn_2  AML     Unknown NA    M        69  33.1 UCAN  
#>  3 DA00003 AML_syn_3  AML     2       NA    F        61  26.2 UCAN  
#>  4 DA00004 AML_syn_4  AML     Unknown NA    M        54  28.1 UCAN  
#>  5 DA00005 AML_syn_5  AML     2       NA    F        57  21.4 UCAN  
#>  6 DA00006 AML_syn_6  AML     Unknown NA    M        86  33.9 UCAN  
#>  7 DA00007 AML_syn_7  AML     1       NA    F        85  28.7 UCAN  
#>  8 DA00008 AML_syn_8  AML     3       NA    F        88  32.6 UCAN  
#>  9 DA00009 AML_syn_9  AML     Unknown NA    M        80  26.1 UCAN  
#> 10 DA00010 AML_syn_10 AML     3       NA    M        48  33.8 UCAN  
#> # ℹ 576 more rows

# Preprocessed metadata
clean_metadata(example_metadata)
#> # A tibble: 586 × 5
#>    DAid    Disease Sex     Age   BMI
#>    <chr>   <chr>   <chr> <dbl> <dbl>
#>  1 DA00001 AML     F        42  22.7
#>  2 DA00002 AML     M        69  33.1
#>  3 DA00003 AML     F        61  26.2
#>  4 DA00004 AML     M        54  28.1
#>  5 DA00005 AML     F        57  21.4
#>  6 DA00006 AML     M        86  33.9
#>  7 DA00007 AML     F        85  28.7
#>  8 DA00008 AML     F        88  32.6
#>  9 DA00009 AML     M        80  26.1
#> 10 DA00010 AML     M        48  33.8
#> # ℹ 576 more rows